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Some Predictions are Difficult
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One of Leibniz’s Views on Prediction

If someone could have a sufficient 
insight into the inner parts of 
things, and in addition had 
remembrance and intelligence 
enough to consider all the 
circumstances and to take them 
into account, he would be a 
prophet and would see the future 
in the present as in a mirror.

From ChaosBook.org and Wikipedia
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Lyapunov Exponents and the Limits on Predictability

0.0125 % change in initial 
condition in one state variable
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The Edge of Chaos
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Extreme Shred Metal
www.edgeofchaos.us
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Applications to Laser Systems

• Develop a set of algorithms for prognostics using data from 
a well-studied ammonium laser system that has chaotic 
behavior.

• Predict the future dynamics of this system

• Generate a signal that represents the confidence in the 
prediction.
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NH3 Laser Model

Lorenz-Hankel Model

( )xy
dt

dx
−= σ

xzyrx
dt

dy
−−=

bzxy
dt

dz
−=

Control Parametersbr ,,σ

Nonlinear  terms

2.0=σ 05.0<q

15=r

25.0=b

One can approximate the dynamical behavior of the laser using 

ideas from nonlinear dynamical systems.

The values of sigma, r, b 
and q determine the 
nature of the chaotic 
attractor.



National Aeronautics and Space Administration

www.nasa.gov

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

Sample points (time axis)

In
te

n
si

ty
Lorenz-Hankel Model

collapse



National Aeronautics and Space Administration

www.nasa.gov

Any random function is a GP, if is a random 

vector which is normally distributed for all                  .

Gaussian Process (GP)

( ) ( ) ( ){ }nxfxfxf ,...,, 21

( )xm ( )
ji xxC ,

( ) ( ) ( )( ) ( )( )
jinn xxCxmNxxxxfxfxfp ,),(,...,,,...,, 2121 =

1×n nn ×

Each function is characterized by its mean          and variance

nxxx ,...,, 21
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Gaussian Process Regression Chooses the Best 
Function to Explain a Data Set
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The Covariance Function Determines the Fit
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Gaussian Process Regression Example
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Example: When the process is stationary

Assumption: function smooth & continuous
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Approach

• Using delay coordinate embedding (and thus Takens’
Theorem) we build a Gaussian Process Regression 
(GPR) to predict:

• Once this distribution is known, we can make predictions 
through iterating the distribution.

( ) ( ) ( ) ( )( ) ( ) ( )( )tXtXPdtXtXtXtXP
*1,....,1,1 +=−−+

Embedding dimension
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One Step Ahead Predictions

GP
( ) ( )( )tXtXP

*1+( )tX
*
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Iterated Predictions

GP

i.e., we feed the output of the model into its input to make a prediction of 

From past prediction iteration

( )tX
* ( ) ( )( )tXtXP

*1+

( ) ( )( )12 * ++ tXtXP

( ) ( ) ( ) ( ) ( )( )[ ]( ) ( ) ( )( )121,....,1,,12 * ++=+−−++ tXtXPdtXtXtXtXPtXP
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Results

• We have shown that we can make iterated forecasts and 
detect a precursor to the sudden drop in intensity using 
kernel methods.

• We can generate a meaningful measure of prediction 
certainty.

• This quantity seems to indicate substantial increases in 
uncertainty near the collapse.
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Structural Application

• Presence of partially closed cracks in objects can be identified using 
an ultrasonic technique. (Ref: K Yamanaka)

• Interaction of high amplitude ultrasonic waves with closed cracks 

generate subharmonic components.
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• The vibration of the Crack Opening Displacement (COD) exhibits 
chaotic behavior if: 

COD
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Further Work

• Understanding the limits of predictability for these 
systems

• Significant testing with respect to forecast variability and 
quality of precursor detection.

• Analysis of forecast horizon.

• Test methods on data from aircraft propulsion systems.
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IVHM Data Mining Lab
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Mission of the IVHM Data Mining Lab

The lab enables the dissemination of Integrated Vehicle Health 
Management data, algorithms, and results to the public. It will serve as a 
national asset for research and development of discovery algorithms for 
detection, diagnosis, prognosis, and prediction for NASA missions.
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Features of the IVHM Data Mining Lab

Datasets

• Propulsion, structures, simulation 
and modeling

• ADAPT Lab 

• Icing

• Electrical Power Systems

• Systems Analysis 

• Flight and subscale systems

• Fleet-wide data

• Multi-carrier data 

Open Source

• Code

• Papers

• Generation of an IVHM community

Selected Discovery Tools

• Inductive Monitoring System 
(IMS) – cluster-based anomaly 
detection

• Mariana – Text classification 
algorithm

• Orca – Distance-based outlier 
detection

• ReADS – Recurring anomaly 
detection system for text

• sequenceMiner – anomaly 
detection for discrete state and 
mode changes in massive data 
sets.



National Aeronautics and Space Administration

www.nasa.gov

Key Research Issues Addressed in the 
IVHM Data Mining Lab

• Real-time anomaly detection 

• Model-free prediction methods

• Hybrid methods that combine discrete and continuous data

• Distributed and privacy-preserving data mining

• Analysis of integrated systems
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Appendix
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NH3 Laser Phenomena

• The laser undergoes periods of buildup of intensity 
followed by a sudden collapse in intensity.  

• Sometimes the collapse is significant, and other times it is 
relatively small.

• It is hard to predict what type of collapse will occur (i.e., it
is a chaotic process).
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Statistical Comparison of GP’s and Neural Networks
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K-step ahead forecasts

• We iterate the Gaussian Process K times to generate 
this time series.

• Performance comparison
» Bagged Neural Networks

» Linear Model

• Forecasting metric:  
normalized mean squared error
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Using characteristic functions of random variables, we can formulate the 

Gaussian property as follows:{Xt}t � T is Gaussian if and only if for every finite 

set of indices t1, ..., tk there are positive reals σl j and reals µj such that

The numbers σl j and µj can be shown to be the covariances and means of the 

variables in the process.

Method

• We address this problem using the theory of Gaussian 
Processes which assumes that any subset of data for a 
vector X is Gaussian distributed (from wikipedia).
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